Develop An Artificial Intelligence Strategy; Include These 9 Things


By Bernard Marr, author and futurist

Artificial intelligence (AI) has the potential to transform every business – in the same way (and possibly more) as the internet has utterly transformed the way we do business. From smarter products and services to better business decisions and optimized (or even automated) business processes, AI has the power to change almost everything. Those businesses that don’t capitalize on the transformative power of AI risk being left behind.

That’s why you need an AI strategy for your business.

One question people often ask me is, ‘Do I still need a separate AI strategy if I’ve already got a data strategy’? In my view, yes, you should have both. In theory, if your data strategy was extremely comprehensive and fully considered the use of AI, then that might be enough. But in practice, a data strategy alone is rarely enough. I therefore recommend every company has a separate AI strategy.

So what should you include in your AI strategy? When I work with a company to develop their AI strategy, we look at the following nine areas:

    1. Business strategy

Creating an AI strategy for the sake of it won’t produce great results. To get the most out of AI, it must be tied to your business strategy and your big-picture strategic goals. That’s why the first step in any AI strategy is to review your business strategy. (After all, you don’t want to go to all this trouble and apply AI to an outdated strategy or irrelevant business goals.)

In this step, ask yourself questions such as:

  • Is our business strategy still right for us?
  • Is our strategy still current in this world of smarter products and services?
  • Have our business priorities changed?
  1. Strategic AI priorities

Now that you’re absolutely clear on where your business is headed, you can begin to identify how AI can help you get there.

In other words:

  • What are our top business priorities?
  • What problems do we want or need to solve?
  • How can AI help us deliver our strategic goals?

The AI priorities that you identify in this phase are your use cases. To ensure your AI strategy is focused and achievable, I’d stick to no more than 3–5 AI use cases.

Examples of AI priorities or use cases include:

  • Developing smarter products and services
  • Making business processes and functions (such as accounts, sales and HR) more intelligent
  • Automating repetitive or mundane tasks to free people up for more value-adding activities
  • Automating manufacturing processes
  1. Short-term AI adoption priorities

Transforming products, services or processes is never going to be an overnight task. It may take some time to deliver the use cases you’ve identified. For that reason, I find it helps to also identify a few (as in, no more than three) AI quick wins – short-term AI priorities that will help you demonstrate value and gain buy-in for bigger AI projects.

Ask yourself:

  • Are there any opportunities to optimise processes in a quick, relatively inexpensive way?
  • What smaller steps and projects could help us gather information or lay the groundwork for our bigger AI priorities?

Next, across each of the AI priorities or use cases that you’ve identified in the steps above, you need to work through the following considerations:

  1. Data strategy

AI needs data to work. Lots and lots of data. Therefore, you need to review your data strategy in relation to each AI use case and pinpoint the key data issues.

This includes:

  • Do we have the right sort of data to achieve our AI priorities?
  • Do we have enough of that data?
  • If we don’t have the right type or volume of data, how will we get the data we need?
  • Do we have to set up new data collection methods, or will we use third-party data?
  • Going forward, how can we begin to acquire data in a more strategic way?
  1. Ethical and legal issues

Let’s not beat around the bush: the idea of super-intelligent machines freaks people out. It’s therefore crucial that you apply AI in a way that’s ethical and above board.

Here, you’ll need to ask yourself questions like:

  • How can we avoid invading people’s privacy?
  • Are there any legal implications of using AI in this way?
  • What sort of consent do we need from customers/users/employees?
  • How can we ensure our AI is free of bias and discrimination?

The ethical implications of AI is a huge topic right now. Notably, tech giants including Google, Microsoft, IBM, Facebook and Amazon have formed the Partnership on AI, a group that’s dedicated to researching and advocating for the ethical use of AI.

Read the source article in Forbes.